If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2=22
We move all terms to the left:
w^2-(22)=0
a = 1; b = 0; c = -22;
Δ = b2-4ac
Δ = 02-4·1·(-22)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{22}}{2*1}=\frac{0-2\sqrt{22}}{2} =-\frac{2\sqrt{22}}{2} =-\sqrt{22} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{22}}{2*1}=\frac{0+2\sqrt{22}}{2} =\frac{2\sqrt{22}}{2} =\sqrt{22} $
| x-10=4x−10=4 | | 141-v=192 | | 9j-9=-3(3-3j) | | -2(6x-1)=2 | | 1/4x+5=-23 | | (14+2a)+((5a-12)-(3a+4))+14+2a+(3a+4)+(5a-12)=144 | | 5*3+x+0.25=350 | | 2a-23=-23+2a | | 8.5x-2(2x+8)=45 | | 1/2+1/(x+4)=3/24 | | 2. x+3+x–8+x=55 | | 2.3^x+1=162 | | −3.8−2.3x=4.25 | | 8y=3y+5y | | a+6=17/9 | | 0=0.8-5t^2 | | -3=3x-15 | | 4x-(-2x-13)=-23 | | 2.3x+1=162 | | 4=6(-2)+b | | 4m+12=-4 | | `0.3x=2.1` | | -10.1=1.1+x/7 | | 9/15x+(1/5)=2/5 | | 140x=5200 | | -10=6=4m | | (9/15x)+1/5=2/5 | | 4(4c-3)=2(5c=18) | | -10x(x-6)=-10^2+60x | | -35=-7/8x | | -4d-1=1+4d | | 12-10+3y=11 |